ВОЗ объявил оспу обезьян (mpox) ЧС в области медицины. «Никогда не было и вот опять!» В 2022 году подобное уже было.
Как болезнь у человека, обезьянья оспа известна с 1970, вспышки только в Африке, в Европе и США - единичные, исключительно завозные, случаи. Перед 2022 годом последние 5 лет в Европе и США было зарегистрировано всего 8 случаев, все с четко прослеживающемся следом из Африки (Нигерия). В 2022 действительно было вспышка, 80 тыс человек переболело более, чем в 100 странах, в основном гомосексуалисты, 200 человек умерло.
Вирусная болезнь, две разновидности вируса, смертность Конголезского вируса- (вирус Cladе-1)-1%, Центральноафриканского- (вирус Cladе-2) -10%. Резервуар вирусов в природе- Африка грызуны. Обезьяна и человек- «случайные» переносчики вируса. От животного к человеку (крысы, белки, обезьяны) вирус попадает через не прожаренное мясо (едят, еще как едят!), контакт с кровью и выделениями животного. (Как тут не вспомнить Шнурова: «натурал ты или би- обезьянку не …») От человека к человеку примерно тем же путем- контакт с кровью и выделениями. Особенно опасны пузырьки на коже больного человека. В первую вспышку основной заболевший контингент- гомосексуалисты и кто там еще есть (раньше проще было женщина/мужчина, мужчина/мужчина, женщина/женщина…. Теперь голову сломаешь!) То есть важен именно тесный, плотный контакт. С дыханием не передается, но с каплями через кашель и чихание- возможно. Но это надо быть лицом к лицу. Отмечены случаи заражение через бытовые вещи больных- одежда, постельное белье и т.д.
И вот сегодня. С начала этого года только в Конго было зарегистрировано 15 600 случаев заболевания mpox и 537 смертей. Конголезский вирус мутировал и смертность от него увеличилась с 0,2-1% до 3%. И самое главное- стал передаваться половым путем уже не только у гомосексуалистов, но и «натуралов». Ну как «натуралов»- проституток, людей с беспорядочными половыми связями, с множеством половых партнеров. Поэтому и основной контингент заболевших в Конго- молодежь. И дети. Ослабленные голодом и инфекционными болезнями (Африка!) дети с их нарушенным иммунитетом легко подхватывают вирус через зараженные вирусом постельное белье и домашнюю утварь. Пока мутировший вирус не покинул Африканский континент. Но и от предыдущего варианта вируса в 16 странах в 2024 зарегистрировано 17 тыс случаев mpox. Кстати есть вакцина. Не та, что было от оспы у людей старшего поколения (она защищает и от оспы обезьян, но в СССР ее прекратили делать в 1980), а новая. Снабжение ей Африканских стран- первоочередная задача для ВОЗ. Ну вообщем, как вы наверно поняли- не наша «тема»…. У нас и так есть о чем переживать….
Влияние типа вскармливания на кишечный метаболом младенцев и их когнитивные функции
Известно, что тип вскармливания (грудное молоко или искусственное вскармливание) и его длительность являются важнейшими факторами, влияющими на состав кишечной микробиоты у младенцев. В различных исследованиях было показано, что наиболее предпочтительным является длительное грудное вскармливание, однако роль смешанного вскармливания, которое является гораздо более распространенным, остается неизученной.
Недавно исследователи изучили (https://www.nature.com/articles/s44324-023-00001-2) влияние типа вскармливания на профиль метаболитов в образцах кала у 112 младенцев в возрасте 1 и 6 месяцев. Дополнительно исследователи оценили когнитивные способности таких детей при достижении ими двух лет.
Все младенцы в возрасте 1 месяц были разделены на 3 группы в зависимости от типа вскармливания: исключительно грудное вскармливание, грудное вскармливание >50% кормлений, искусственное вскармливание ≥50% кормлений. Шестимесячные младенцы были разделены на 2 группы: питающиеся преимущественно грудным молоком и питающиеся преимущественно молочной смесью.
Несколько любопытных результатов данного исследования:
🔹 Разнообразие метаболитов было достоверно больше в группе детей, вскормленных преимущественно грудным молоко
Данная тенденция наблюдалась у детей обоих возрастных групп (1 и 6 месяцев).
🔹 Кормление искусственной молочной смесью увеличило долю метаболитов, ассоциированных с низкими когнитивными функциями
К таковым относятся кадаверин, метилэкгонил, пролин и глицерат (у детей в возрасте 1 месяц), а также миристат, пальмитат и петроселиновая кислота (в возрасте 6 месяцев). Высокий уровень данных метаболитов в образцах кала в соответствующем возрасте был ассоциирован с менее выраженными когнитивными функциями в 2-х летнем возрасте.
🔹 Длительное грудное вскармливание повышало уровень холестерина в стуле, который напрямую коррелировал с высокими показателями когнитивных тестов.
Данная взаимосвязь достаточно очевидна, поскольку жирные кислоты имеют важное значение для формирования здоровых связей между клетками мозга. Примечательно, что от 80% до 90% будущего объема мозга формируется в первые 2 года жизни.
🔹 Среди детей, находящихся на грудном вскармливании, чаще обнаруживался высокий уровень кофеина в стуле
С позиции исследователей, появление кофеина в кале младенцев может быть объяснено тем, что, возможно, мамы кормили младенцев грудью за чашкой кофе.
🔹 Высокий уровень кофеина в стуле детей был ассоциирован с низким показателем когнитивных функций
Результаты отдельных исследований показали, что пренатальное воздействие кофеина связано с более низкими показателями развития нервной системы у детей, ввиду чего беременным женщинам рекомендуется ограничить употребление кофе. Согласно результатам данного исследования, это справедливо и для кормящих мам.
Выводы
Всемирная организация здравоохранения рекомендует кормить младенцев исключительно грудным молоком в течение первых шести месяцев жизни. Для некоторых родителей грудное вскармливание невозможно, поэтому меры по улучшению качества молочных смесей сохраняют свою актуальность.
Результаты данного исследования обращают внимание, что анализ кишечного метаболома является немаловажной мерой по оценке влияния питательных смесей на здоровье детей. Однако требуется более углубленное изучение данного взаимоотношения (например, с оценкой состава кишечного микробиома младенцев).
Первый международный симпозиум «Биохимия и биофизика ДНК в нанотехнологиях и медицине», 14-15 мая 2018 г., Белорусский государственный педагогический университет, Минск, Беларусь.
ТЕМАТИКА: • Биохимия и биофизика нуклеиновых кислот • Хроматин и эпигенетика • Связывание лигандов с ДНК • Генотипирование • ДНК-сенсоры • Медицинская диагностика на базе ДНК • ДНК-анализ в судебной экспертизе
ОРГАНИЗАЦИОННЫЙ КОМИТЕТ: Зеленкевич В.М., к.т.н., проректор по учебной работе БГПУ Науменко Н.В., к.с.-х.н., декан факультета естествознания БГПУ Жилко В.В., к.х.н., заведующий кафедрой химии БГПУ Егорова В.П., к.б.н., доцент кафедры химии БГПУ Крылова Г.В., к.ф.-м.н., в.н.с., физический факультет БГУ Тейф В.Б., к.х.н., зав. лаборатории генной регуляции, Университет Эссекса
ПРОГРАММНЫЙ КОМИТЕТ: Эренпрейса Е.А., академик (Латвийский центр биомедицинских исследований) Бабенко А.С., к.х.н. (Белорусский государственный медицинский университет) Блохин А.П., д.ф.-м.н. (Институт физики НАН Беларуси) Егорова В.П., к.б.н. (Белорусский государственный педагогический университет) Евстигнеев М.П., д.ф.-м.н. (Севастопольский государственный университет) Крот В.И., к.б.н. (Белорусский государственный университет) Кручинин С.П., д.ф.-м.н. (Институт теоретической физики НАН Украины) Крылова Г.В., к.ф.-м.н. (Белорусский государственный университет) Лахвич Т.Т., к.х.н. (Белорусский государственный медицинский университет) Нечипуренко Ю.Д., д.ф.-м.н. (Институт молекулярной биологии РАН) Рузов А.С., к.б.н. (Университет Ноттингема) Тейф В.Б., к.х.н. (Университет Эссекса) Трифонов Р.Е., д.х.н (Санкт-Петербургский государственный университет) Цыбовский И.С., к.х.н. (Государственный комитет судебных экспертиз Республики Беларусь)
ИНСТРУКЦИЯ ПО ОФОРМЛЕНИЮ МАТЕРИАЛОВ КОНФЕРЕНЦИИ: Программа конференции включает в себя пленарные доклады (50 мин), секционные доклады (20 минут) и постерные презентации. Оформление резюме докладов осуществляется следующим образом: Текст должен быть в редакторе Word, размер кегля 12, шрифт - Times New Roman. Поля: 25 мм. Максимальный объем текста – 200 слов. Допускается использовать английский или русский языки. Рекомендуется использовать английский. Оргкомитет оставляет за собой право отклонить материалы, не соответствующие тематике или оформленные без соблюдения вышеуказанных правил. Материалы доклада должны быть высланы по адресу egorova_vp@bspu.by до 1 мая 2018 г.
Резюме всех докладов будут опубликованы в сборнике симпозиума. Избранные доклады (статьи) будут рекомендованы к публикации в специальном выпуске журнала Nonlinear Phenomena in the Complex Systems (Индексируется в SCOPUS).
РЕГИСТРАЦИЯ: Для регистрации заполните регистрационную форму и отправьте ее вместе с резюме доклада и копией платежного документа по адресу egorova_vp@bspu.by. Регистрационный взнос 150 евро. (Cумма, эквивалентная 150 евро в белорусских рублях по курсу Национального банка на день оплаты). Студенты и аспиранты оплачивают 50% регистрационного взноса. Оплата должна быть произведена до 1-го мая 2018 г.
Контактная информация: Егорова Валентина Петровна Кафедра химии Белорусский государственный педагогический университет Ул. Советская, 18 Минск, 220030, Беларусь Tel. +375 29 330 64 03 E-mail: egorova_vp@bspu.by Web-site: http://conf.bspu.by Twitter: @MinskDNA2018
В ПОНЕДЕЛЬНИК 26 марта 2018 года в 13-00 состоится Междисциплинарный семинар «Биология развития» (Москва, Вавилова 26).
Докладчик: Тарабыкин Виктор Степанович, директор Института клеточной биологии и нейробиологии Медицинского университета Шарите (Германия, Берлин). зав. лабораторией генетики развития мозга Нижегородского государственного университета.
Тема семинара: Молекулярные основы развития коры головного мозга.
Кора головного мозга считается главным достижением эволюции млекопитающих. Она формирует биологическую основу когнитивных способностей человека, которые включает в себя язык, решение проблем, рассуждение, принятие решений, память. Развитие коры является сложноорганизованным процессом, нарушение которого приводит к широкому спектру патологий развития известных как пороки развития коры головного мозга. В процессе развития коры, нейронные предшественники, расположенные в вентрикулярной зоне переднего мозга, генерируют разные типы проекционных нейронов, которые расположены в шести слоях зрелого мозга. Нейроны внутри каждого слоя рождаются в одно и то же время и имеют сходные морфологию и нейрональные связи. Молекулярные механизмы, которые контролируют клеточную судьбу нейронов коры и установление связей с другими нейронами все еще не изучены. В последние годы наши исследования были сосредоточены на выявлении и характеристике генов, которые контролируют спецификацию судьбы стволовых клеток в коре головного мозга и их дифференцировку. Мы используем методы как прямой, так и обратной генетики для выявления таких генов и изучения молекулярного механизма их действия. Несколько примеров таких генов будет представлено.
Избранные публикации
Sip1 downstream Effector ninein controls neocortical axonal growth, ipsilateral branching, and microtubule growth and stability. Srivatsa S, Parthasarathy S, Molnár Z, Tarabykin V. Neuron. 2015 Mar 4;85(5):998-1012. doi: 10.1016/j.neuron.2015.01.018.
Ntf3 acts downstream of Sip1 in cortical postmitotic neurons to control progenitor cell fate through feedback signaling. Parthasarathy S, Srivatsa S, Nityanandam A, Tarabykin V. Development. 2014 Sep;141(17):3324-30. doi: 10.1242/dev.114173. Epub 2014 Aug 1.
Unc5C and DCC act downstream of Ctip2 and Satb2 and contribute to corpus callosum formation. Srivatsa S, Parthasarathy S, Britanova O, Bormuth I, Donahoo AL, Ackerman SL, Richards LJ, Tarabykin V. Nat Commun. 2014 Apr 17;5:3708. doi: 10.1038/ncomms4708.
Sip1 regulates sequential fate decisions by feedback signaling from postmitotic neurons to progenitors. Seuntjens E, Nityanandam A, Miquelajauregui A, Debruyn J, Stryjewska A, Goebbels S, Nave KA, Huylebroeck D, Tarabykin V. Nat Neurosci. 2009 Nov;12(11):1373-80. doi: 10.1038/nn.2409. Epub 2009 Oct 18. PMID: 19838179
Satb2 is a postmitotic determinant for upper-layer neuron specification in the neocortex. Britanova O, de Juan Romero C, Cheung A, Kwan KY, Schwark M, Gyorgy A, Vogel T, Akopov S, Mitkovski M, Agoston D, Sestan N, Molnár Z, Tarabykin V. Neuron. 2008 Feb 7;57(3):378-92. doi: 10.1016/j.neuron.2007.12.028.
Место проведения семинара: конференц-зал Института биологии развития им. Н.К. Кольцова РАН, улица Вавилова, 26. (М. Ленинский проспект). Вход свободный. На входе необходимо сказать, что Вы идете на семинар.
Приглашаем Вас принять участие в мастер-классе по времяразрешенной флуоресцентной спектроскопии, организованном компанией Technoinfo совместно с PicoQuant. Мастер-класс пройдет 12 октября в ИБХФ РАН . Начало в 11:00. В рамках мастер-класса состоятся лекции Dr. Christian Litwinski (PicoQuant GmbH, Berlin) и член-корр. РАН, д.ф-м.н., проф. Владимира Федоровича Разумова. После лекций будут организованы практические занятия на приборе FluoTime300.
Для участия в практических занятиях необходимо подать заявку до 10 октября с указанием номера группы. Можно принести свой образец по предварительному согласованию.
Программа мастер-класса во вложении. Заявки на участие просим высылать на почту d.pleshkov@technoinfo.ru с указанием ФИО, контактных данных и места работы.
Место проведения: ИБХФ РАН, конференц-зал, адрес: ул. Косыгина, 4, Москва Начало: 11:00 Рабочий язык: английский
Программа мастер-класса:
11:00-11:10 Приветствие, представление участников 11:10-11:45 PicoQuant company introduction. Dr. Christian Litwinski 11:45-12:30 FluoTime 300 for Time-Resolved and Steady-State Spectroscopy. Dr. Christian Litwinski 12:30-13:00 Особенности спектрально-кинетических характеристик фотолюминесценции коллоидных квантовых точек. Товстун Сергей Александрович, Разумов Владимир Федорович 13:00-13:30 Кофе-брейк 13:30-15:00 Практические занятия на приборе FluoTime300. Первая группа 15:00-16:30 Практические занятия на приборе FluoTime300. Вторая группа 16:30-18:00 Практические занятия на приборе FluoTime300. Третья группа
Организаторы: - компания PicoQuant, - компания Техноинфо, - лаборатория процессов фотосенсибилизации ИБХФ РАН Контактное лицо: Дмитрий Плешков, тел. +7 926 610-91-79, e-mail: d.pleshkov@technoinfo.ru.
28 апреля в Сколтехе пройдет коллоквиум проф. Али Хадемхоссейни, «Нано- и микро-гидрогели для регенеративных технологий», посвященный искусственным материалам, сочетающим достижения полимерной химии, нанотехнологий и биологии, которые могут быть использованы для создания высокоэффективных видов лечения.
О спикере: Али Хадемхоссейни, профессор Гарвардской медицинской школы, Кембриджского Университета и преподаватель отделения медицинских наук и технологий Гарварда-МТИ, Массачусетского технологического института. Его научная группа занимается созданием средств восстановления тканей при помощи водосодержащих полимерных сеток, так называемых «гидрогелей», которые могут управлять поведением клеток.
В частности, они разработали фотосшиваемые гибридные гидрогели, объединяющие природные биомолекулы и наночастицы, управляющие химическими, биологическими, механическими и электрическими свойствами гелей. Этот функциональный клеточный каркас способствует дифференциации стволовых клеток на необходимые типы и управляет формированием васкуляризированных тканей сердца или костных тканей. Поскольку функции тканей в значительной степени зависят от их структуры, для производства миниатюризованных тканей научная группа проф. Хадемхоссейни использовала микротехнологические методы, такие как микрогидродинамику, фотолитографию, печать органических тканей и литье, для управления структурой данных материалов.
Для воспроизведения сложной структуры тканей группа также разработала методики направленной сборки, позволяющие объединить малые тканевые модули в большие образования. Ожидается, что такие подходы приведут к разработке методов регенеративного лечения и биомедицинских устройств нового поколения.
Когда? Четверг, 28 апреля 2016 года, 13:00 Где? Сколковский институт науки и технологий, улица Нобеля, 3. Аудитория 402
Коллоквиум проводится в Сколковском институте науки и технологий совместно с Центром по проектированию, производственным технологиям и материалам. Язык коллоквиума – английский.
За дополнительной информацией об участии и другим вопросам обращайтесь к Екатерине Кузьминой (e.kuzmina@skoltech.ru)
Даты: 24-28 мая 2016 г. Место проведения: Долгопрудный, Московская обл., Московский физико-технический институт Организаторы: НП «Центр развития Биофармацевтического кластера «Северный», Центр живых систем МФТИ, НИИ Молекулярной биологии и биофизики (НИИМББ). Конференция пройдет также при поддержке РНФ.
Международная конференция ФизтехБиo — крупная ежегодная конференция Биофармкластера "Северный", посвященная вопросам развития и новейшим достижениям в области «живых систем».
В этом году программа конференции поделена на два тематических блока и будет интересна как ученым и исследователям, так и стартаперам, венчурным фондам, бизнес-ангелам.
Научным фокусом ФизтехБио в этом году станут вопросы разработки новых лекарственных препаратов и технологий диагностики онкологических заболеваний. В рамках конференции пройдут научные сессии 21-ого Международного Симпозиума им. Чарльза Хайдельбергера по исследованию рака.
Программа Симпозиума включает в себя темы по эпидемиологии рака, механизмам канцерогенеза, микроокружению опухоли, метастазам, генетике и эпигенетика рака, таргетной терапии рака и нейроонкологии. В программе примут участие известные специалисты в области онкологии, в том числе Кертис Харрис (США), Кларк Чен (США), Израиль Влодавский (Израиль), Карл-Хайнрих Линк (Германия), Евгений Имянитов (Россия), Михаил Чернов (Япония) и многие другие.
В рамках Симпозиума в первый день конференции будет проведена Школа молодых ученых, посвященная молекулярной и клинической онкологии, лечению раковых заболеваний.
На протяжении всех дней конференции будет работать выставка постерных докладов, в которой также можно принять участие всем желающим.
В рамках бизнес-блока мероприятий пройдут питч-сессии стартапов и проектов по четырем направлениям:
• Фармацевтика • Медицинская техника • Агробиотехнологии • Нейротехнологии
Мероприятие пройдет при поддержке ООО "Кси Венчурс", управляющего товарища «Посевного фонда в области живых систем», заинтересованного в отборе наиболее перспективных инновационных проектов для их дальнейшего финансирования и развития.
Приглашаем всех молодых предпринимателей, разработчиков, исследователей выступить с презентацией своего проекта! Победители конкурса питч-презентаций получат право на программу по акселерации для своего стартапа и уникальную возможность поехать на международную выставку и конференцию BIO International Convention-2016 в Сан-Франциско в июне этого года!
Бизнес-блок также включает в себя выставочную экспозицию профильных компаний. Приглашаем компании и организации в области фармацевтики, медицинской техники, биотехнологий, нейротехнологий и инновационного агросектора принять участие и стать экспонентом нашей конференции! В предыдущей V Международной конференции ФизтехБио приняло участие более 400 делегатов, среди которых были представители Министерств и Правительства РФ, ректоры университетов, ведущие сотрудники НИИ и институтов РАН, зарубежные ученые, участники и индустриальные партнеры Биофармацевтического кластера «Северный». 70 спикеров выступили с научными докладами, более 60 стендов постерных докладов молодых ученых и стендов медицинских и биотехнологических компаний украшали экспозицию конференции.
По всем вопросам обращайтесь в Оргкомитет Конференции:
Биофармкластер «Северный» на базе МФТИ Адрес: Московская обл., г. Долгопрудный, Институтский пер., д.9, стр.7 Телефон: +7 (495) 408 42 00 E-mail: conference@pharmcluster.ru www.pharmcluster.ru
Компания Applied Photophysics (UK) совместно с Институтом Биохимии им. А.Н. Баха и компанией Technoinfo приглашает Вас принять участие в
мастер-классе
Спектроскопические методы для определения структуры и свойств биомолекул
4-5 апреля .
Место проведения: Институт биохимии им. А.Н. Баха РАН. Конференц-зал, 3 этаж. Докладчик: Anna Łęczkowska, PhD, Applied photophysics application scientist (UK).
ПРОГРАММА МАСТЕР-КЛАССА
4 АПРЕЛЯ
11:00 – 11:10. Приветствие участников. 11:10 – 13:30. Спектроскопия кругового дихроизма (КД), автоматизированная КД-спектроскопия, количественный КД. Изучение структуры и свойств биомолекул, определение вторичной и третичной структуры белков, конформационной стабильности, биосовместимости. Лекция. Anna Łęczkowska 13:30-14:30. Кофе-брейк 14:00-15:00. Практические занятия на КД-спектрометре Chirascan. 1 группа 15:00-16:00. Практические занятия на КД-спектрометре Chirascan. 2 группа 16:00-17:00. Практические занятия на КД-спектрометре Chirascan. 3 группа
5 АПРЕЛЯ
11:00-13:00. Спектроскопия остановленного потока (Stopped flow). Ферментативный катализ, фолдинг/рефолдинг белков, связывание лигандов и лекарств с белками и ДНК/РНК, кинетика в координационной химии. Совместное использование методов КД и stopped flow. Лекция. Anna Łęczkowska 13:00-14:00. Кофе-брейк 13:30-14:30. Практические занятия на КД-спектрометре Chirascan. 4 группа 14:30-15:30. Практические занятия на КД-спектрометре Chirascan. 5 группа 15:30-16:30. Практические занятия на КД-спектрометре Chirascan. 6 группа
!!!Для участия в практических занятиях необходимо подать заявку на pleshkov@technoinfo.ru до 1 апреля с указанием номера группы. Можно принести свой образец по предварительному согласованию.!!!
Организаторы: - Институт биохимии им. А.Н. Баха РАН - Компания Applied Photophysics - Компания Техноинфо Ответственное лицо: Дмитрий Плешков, специалист отдела биологии и биотехнологий Техноинфо, Контакты: тел. +7 926 610-91-79, e-mail: pleshkov@technoinfo.ru
Компания Applied Photophysics - производитель высокоточных спектрометров для изучения кругового дихроизма, лазерного импульсного фотолиза и кинетики процессов в остановленном потоке.
Техноинфо является официальным дистрибьютором компании Applied Photophysics, которая специализируется на производстве высокоточных спектрометров для изучения кругового дихроизма, лазерного импульсного фотолиза и кинетики процессов в остановленном потоке
Presenter profile - Dr Anna Łęczkowska
Anna has over 10 years of academic experience in interdisciplinary research including the life sciences and medicinal chemistry areas. Her research interests lie at the interface between chemistry and biology with a particular focus on using spectroscopic tools for pharmaceutical applications. These include studying the function and structural features of natural biomolecules, both proteins and nucleic acids, as well as exploring synthetic systems for medicinal applications.
Институт биоинформатики открывает регистрацию на трехнедельные онлайн-курсы, которые начнутся 10 ноября.
Курсы проведут преподаватели Института на русском языке.
Программирование на Python (Павел Федотов) Курс начального уровня; создан для тех, кто совсем не умеет программировать ни на одном языке. Специальных знаний, кроме математики школьного уровня и навыков работы с компьютером, не требуется.
Молекулярная биология и генетика (Павел Добрынин) Курс рассчитан на широкую аудиторию слушателей, заинтересованных генетикой, клеточной и молекулярной биологией. Для прохождения нужны только базовые знания школьной программы.
Каждый курс рассчитан 3-4 часа еженедельной нагрузки и состоит из коротких видео-уроков и небольших заданий.
Для участия не нужно обладать специализированными знаниями или заниматься биоинформатикой. Курсы базовые и рассчитаны на широкую аудиторию. Они подойдут всем желающим освоить начальные навыки программирования, разобраться с работой в операционной системе Linux или узнать больше о генетике и молекулярной биологии.
Традиционно принято считать, что изменения длины транскриптов являются эволюционно нейтральными событиями. Тем не менее, очевидно, что чем длиннее ген, тем больше клеточных ресуров он требует для транскрипции. И, что немаловажно, для транскрипции длинных генов необходимо значительное время. Например, рекордсмен по длине первичного транскрипта, человеческий ген дистрофина (2.3 Мб), транскрибируется около 16ч. Однако, транскрипция со всех трех классов полимераз прекращается во время митоза. Абортивные транскрипты при этом деградируют в ядре при участии малоизученного механизма. Следовательно, в интенсивно пролиферирующих клетках транскрипция длинных генов должна быть затруднена или вообще невозможна. Поскольку длина первичных транскриптов определяется в основном размером интронов, этот феномен был назван интронной задержкой (intronic delay). Интронная задержка может играть важную роль в различных процессах. Например, она обеспечивает осцилляцию ряда генов при формировании сомитов позвоночных. У "быстрых" генов, например участвующие в клеточном ответе на стресс, низкая плотность интронов.
Рассматриваемая статья посвящена анализу феномена интронной задержки в полногеномном масштабе. Для выяснения связи длины транскриптов и интенсивностью пролиферации были выбраны эмбрионы дрозофилы. Как известно, у дрозофилы деления дробления не сопровождаются формированием клеточных мембран и происходят очень быстро: первые 9 делений занимают около 9 минут каждое, затем еще 4 деления занимают по 17 минут, а 14е деление происходит еще через час, которое завершается целлюляризацией. В ходе анализа эмбрионального транскриптома авторы подтвердили ряд предсказаний теории интронной задержки: зиготические транскрипты короче материнских; на ранних стадиях дробления доля генов без интронов выше, чем на более поздних; разница в уровнях экспрессии длинных и коротких генов уменьшается по мере удлинения клеточного цикла в ходе эмбриогенеза. Показано, что эти эффекты обусловлены не различиями в скорости инициации транскрипции или в скорости деградации РНК, а тем, что длинные гены не успевают транскрибироваться. На ранних стадиях обнаружено большое число абортивных 5'-транскриптов, тогда как на более поздних стадиях их пропорция по отношению к нормальным уменьшается. Кроме того, авторы сравнили интронную задержку у разных видов дрозофилы. Оказалось, что она не является, как считалось раньше, селективно-нейтральной. Короткие транскрипты, экспрессирующиеся на ранних стадиях, испытывают существенное давление отбора против увеличения размеров; этот эффект проявляется сильнее на генах с высоким уровнем экспрессии. Некоторые данные позволяют предположить, что эффект интронной задержки имеет место и у позвоночных.
Таким образом, размер интронов сам по себе является существенным фактором, влияющим на паттерн экспрессии генов, структуру и эволюцию геномов.
Картинка из рассматриваемой статьи: Зависимость уровня экспрессии генов от стадии развития (А и В – два разных набора данных).
Белки семейства Rb (от Retinoblastoma) являются ключевыми регуляторами клеточного цикла, запрещая переход от G0 к G1. Они связываются с транскрипционным фактором E2F, регулируя экспрессию ряда генов клеточного цикла. Инактивация Rb приводит к неконтролируемой пролиферации и инициации онкогенеза. Неудивительно, что гены Rb оказываются мутированными в клетках самых разных опухолей. Однако, как выяснилось, "всевластие" Rb оказалось не столь безгранично, как считалось ранее.
Статья в Cell Reports посвящена роли Rb в регуляции пролиферации гепатоцитов. Печень млекопитающих примечательна необычно высокой способностью к регенерации, в том числе и после частичной гепатэктомии. Поэтому, вследствие высокого пролиферативного потенциала, гепатоциты являются хорошей моделью для изучения регуляции клеточного цикла. Исследователи провели кондиционный нокаут всех трех генов семейства Rb в гепатоцитах взрослых мышей – Rb, p107 и p130 (TKO, triple-knockout). К удивлению авторов, TKO в зрелых гепатоцитах (в отличие от предшественников оных) привел лишь к временной активации пролиферации – через некоторое время клетки опять переставали делиться. Это означает, что активность Rb является не единственным механизмом ареста клеточного цикла зрелых гепатоцитов. Дальнейшее изучение этого феномена показало, что прекращение пролиферации не зависит от p53-пути, а находится под контролем E2F. Сравнение транскриптомов покоящихся клеток дикого типа и "арестованных" TKO показало, что значительная часть генов, экспрессия которых оказалась подавлена в TKO-гепатоцитах, является мишенями YAP. YAP – транскрипционный фактор, ключевой участник сигнального каскада Hippo, играющего важную роль в эмбриональном развитии печени, контроле ее размера и онкогенной трансформации. Был отмечен пониженный уровень YAP и TEAD1, а также повышенный уровень фосфорилирования YAP. Выяснилось, что E2F и YAP регулируют сходный набор генов-мишеней. Трансформация TKO-гепатоцитов конститутивно-активной формой YAP приводила к активации генов-мишеней E2F и возобновлению пролиферации. Детали этого механизма не вполне ясны; предполагается, что E2F и YAP могут физически взаимодействовать на промоторах генов-мишеней.
Таким образом, в гепатоцитарных предшественниках пролиферативная активность контролируется белками семейства Rb. В зрелых же гепатоцитах вступает в игру Hippo-зависимый контроль размера органов, образуя дополнительный механизм контроля клеточного деления.
В-клетки поддерживают развитие плоскоклеточной карциномы путем депозиции иммунного комплекса в премалигнизированную ткань и активации миелоидных клеток. Истощение В-клеток усиливает инфильтрацию опухоли активированными лимфоцитами и улучшает ответ на химиотерапию. В-клетки и регулируемые ими пути представляются перспективными мишенями для противораковой терапии.
В-лимфоциты – главный компонент гуморального иммунитета, участвуют в продукции иммуноглобулинов, в презентировании антигенов, секретируют провоспалительные цитокины. Но иммунный ответ на опухоль не всегда связан с её подавлением. Противоопухолевые антитела могут защищать раковые клетки от атаки цитотоксичных Т-клеток, В-клетки могут поддерживать развитие опухоли. Авторы предположили, что В-клетки и регулируемые ими пути могут быть мишенями для комбинированного с химиотерапией лечения рака.
В окружении опухолей плоскоклеточной карциномы человека (squamous cell carcinoma (SCC)) наблюдалась усиленная транскрипция мРНК CD20 (поверхностного белка В-клеток) и иммуноглобулинов (Ig). Ранее на модельных SCC мышах было показано, что развитие SCC сопряжено со связыванием Ig c активированными рецепторами FcγR В-клеток. Поэтому авторы решили проверить терапевтическую эффективность подавления В-клеток с помощью моноклональных антител против CD20 и блокирования сигнального пути Fcγ с помощью селективных ингибиторов тирозинкиназы Syk. Оба этих агента эффективно подавляли прогрессию пре-SCC дисплазии в рак. Дефецит В-клеток приводил к неспособности поддерживать рост опухолей SCC. Если анти-CD20 вводили мышам одновременно с имплантацией сингенной SCC, они достоверно замедляли рост опухоли. Но если опухоль уже развилась, несмотря на ее сильную инфильтрацию Т-клетками существенного эффекта не наблюдалось. Химиотерапевтические средства, в частности паклитаксель, также не оказывали существенного влияния на развившуюся опухоль, но их комбинация с анти-CD20 приводила к регрессии опухолей. Прекращение терапии паклитакселем сопровождалось возобновлением роста опухоли, но последующее возобновление терапии опять вызывало регрессию.
Комбинированная терапия анти-CD20+паклитаксель перепрограммировала микроокружение SCC усиливая инфильтрацию опухоли CD8+ Т-клетками, что приводило к ускорению гибели раковых клеток. CD8+ Т-клетки, полученные из селезенки, обрабатывали культуральной средой макрофагов мышей леченных анти-CD20+паклитаксель. Эти макрофаги усиленно экспрессировали мРНК ряда цитокинов, связанных с мобилизацией лейкоцитов (в частности CCL5). Селезеночные CD8+ Т-клетки экспрессировали рецепторы CCR5 и CXCR3, связанные с сильным противоопухолевым ответом. Блокада CCR5 ослабляла хемотаксис CD8+ Т-клеток до уровня его у нелеченных мышей. Ограничение инфильтрации опухоли макрофагами путем нейтрализации соответствующими антителами фактора стимуляции роста колоний CSF1 восстанавливало ангиогенез в опухоли. Нейтрализация лечебного эффекта анти-CD20+ паклитаксель достигалась путем подавления CD8+ Т-клеток, а также химическим ингибитором CCR5. Таким образом, ответ на терапию регулируется CCR5-положительными CD8+ Т-клетками.
Вероятно, анти-CD20 будут полезны для лечения и других, отличных от SCC форм рака. Следует также определить терапевтическую эффективность блокирования регулируемых В-клетками путей, в частности подавление активности киназ Syk и ВТК.
Подпись к рисунку: Истощение В-клеток перестраивает фенотип ассоциированных с опухолью макрофагов. Слева: при развитии опухоли продукция аутоантител В-клетками приводит к внедрению иммунного комплекса (IC) в неопластическую ткань. Этот комплекс активирует рецептор FcγR, активирует ряд проопухолевых путей, включая ангиогенез, перестройку тканей и пути поддерживающие опухоль в окружающих тканях и в ассоциированных с опухолью макрофагах (ТАМ) ТН2. Справа: терапия антителами против CD20 уменьшает количество В-клеток и иммуноглобулинов, в отсутствие которых развиваются ТН1 ТАМ, продуцирующие повышенный уровень ангиосатиков (CXCL10, 11) и хемокинов CCL, которые стимулируют инфильтрацию опухоли CD8+ Т-клетками и усиливают ответ на химиотерапию (СТХ).
Математик Алан Тьюринг известен не только как взломщик знаменитого кода «энигма» во II мировую войну, но и как автор математических моделей эмбриональных процессов. В частности, т.н. модель реакции-диффузии вошла во все современные учебники эмбриологии. Эта модель хорошо описывает такие процессы, как пигментация кожи рыб или распределение волосяных фолликулов в эмбриогенезе. В замечательной статье в Science испанские исследователи применили модель реакции-диффузии к совсем другому эмбриональному процессу — формированию пальцев при развитии конечностей. Традиционно считалось, что разметкой конечности управляет в основном сигнальный каскад Shh (Sonic hedgehog). Однако со временем накопилось значительное количество фактов, свидетельствующих о том, что разметка пальцев контролируется не активностью Shh, а каким-то другим самоорганизующимся процессом.
Авторы рассматриваемой статьи обратили внимание на тот факт, что экспрессия в зачатках конечностей раннего скелетного маркера Sox9, в норме и при определенных экспериментальных воздействиях напоминает модель Тьюринга. Сам Sox9 является не только downstream-эффектором, но и активным участником сети Тьюринга — он влияет на активность сигнальных каскадов BMP, Wnt и FGF. При этом активность каскадов BMP и Wnt оказывается в пространственной противофазе с экспрессией Sox9. Исходя из экспериментальных данных, авторы разработали мат. модель, суть которой понятна из приводимого рисунка: BMP активирует экспрессию Sox9, Wnt ее подавляет, а сам Sox9 подавляет активность обоих каскадов, т.н. BSW, Bmp-Sox9-Wnt модель. Эта модель несколько сложнее, чем исходная модель реакции-диффузии (состоящая из двух компонентов - активатора и ингибитора). Модель BSW неплохо моделировала формирование полос Sox9 и Bmp/Wnt при искусственном культивировании клеточной массы, однако для большего приближения к реальному процессу эмбриогенеза авторам пришлось учесть модулирующее влияние гена Hoxd13 и каскада FGF. Итоговая компьютерная симуляция воспроизводила природный процесс с большой точностью. Кроме того, моделирование искусственных воздействий на систему было подтверждено экспериментально. Так, подавление Bmp приводило к исчезновению экспресии Sox9, подавление Wnt — к ее равномерному распределению, а подавление обоих каскадов — к увеличению «длины волны», т.е размеров пальцев, в точном соответствии с моделью.
Таким образом показано, что в разметке конечности участвуют два не зависимых друг от друга процесса (см. рис.). На более ранней стадии развития каскад Shh определяет передне-заднюю полярность конечности, а затем, в соответствии с вышеописанным механизмом, происходит разделение на отдельные пальцы. Zuniga and Zeller, к тому же, предполагают, что взаимодействие этих двух процессов (Shh регулирует экспрессию Hoxd13, а тот, вместе с FGF, влияет на BSW систему) привело к уменьшению числа пальцев в ходе эволюции тетрапод до 5.
Картинка из Science perspective: Слева — ранний зачаток почки конечности; цветом показан градиент Shh, определяющий передне-заднюю ось формирующейся конечности. Внизу — трехузловая модель реакции-диффузии Тьюринга. Справа — пространственное распределение Bmp, Wnt и Sox9 в более позднем зачатке конечности. d1-d5 – пальцы с 1го по 5й, соответственно.
После проведения химиотерапии лейкемические клетки могут формировать мелкие фокусы, окруженные защищающими их клетками. Эффективность химиотерапии повышается, если воздействовать на формирование таких ниш или на функции образующих их клеток.
Способность клеток-распространителей рака (cancer-propagating cells (CPCs)) уклоняться от действия терапии и связанные с ней рецидивы представляют собой одну из главных проблем при лечении онкологических заболеваний. Исследования этого явления концентрируются в основном на свойствах CPCs. В то же время накапливаются данные, что уклонение от терапии обусловлено главным образом субклонами CPCs, локализованными в особых нишах со специфическим микроокружением. Недавно были охарактеризованы ниши нормальных гематопоэтических стволовых клеток (hematopoietic stem cell (HSC)). Механизмы, с помощью которых эти ниши поддерживают HSC, могут быть использованы для защиты клеток-распространителей лейкемии (leukemia-propagating cells (LPCs)). Лейкемические клетки окупируют внутрикостные ниши, которые защищают их от химиотерапии. В то же время они могут разрушать окружение костного мозга и интерферировать с нормальным гематопоэзом. Данные о взаимодействии лейкемических клеток с компонентами ниши, в частности при терапии, практически отсутствуют.
Авторы изучили взаимодействие культивируемых клеток острой лимфобластоидной анемии (acute lymphoblastic leukemia (ALL)) с компонентами ниши на модельных мышах и сопоставили полученные результаты с данными анализа биопсий костного мозга пациентов. При введении культивируемых клеток ALL человека сублетально облученным мышам клетки ALL сначала образовывали микродомены и постепенно заполняли полости костного мозга разрушая васкулярное и внутрикостное микроокружение. При введении таким мышам агентов первой линии терапии ALL (цитарабина или/и даунорубицина) выжившие клетки ALL колонизовали ниши костного мозга, а также новые ниши, которые формировались только вследствие введения лейкемических клеток. Ниши, образовывавшиеся под действием терапии, формировались мезенхимальными клетками со свойствами стволовых. Лейкемические клетки секретировали цитокины (среди них CCL3), факторы роста, под действием которых происходила мобилизация и дальнейшая транзиция свойств мезенхимальных клеток. Мезенхимальные Nestin+ стволовые клетки постепенно превращались в α-SMA+.
ALL клетки из сформированных ниш обладали повышенной устойчивостью к цитарабину. Сравнительный анализ экспрессии генов показал, что в них резко (в 32 раза) усилена экспрессия GDF15. GDF15 (Growth differentiation factor 15) связан с лекарственной устойчивостью при ряде других форм раков. Введение в культивируемые ALL клетки активно экспрессирующегося GDF15 усиливало их резистентность к цитарабину. Антитела против GDF15, введенные мышам на фоне терапии цитарабином, значительно сокращали количество ALL клеток, но не влияли на формирование ниш. GDF15, продуцируемый ALL клетками, индуцирует синтез фосфорилированного Smad3, который активирует сигнальный путь TGF-β. В общем ниша предоставляет возможность ALL клеткам секретировать стрессовый белок GDF15, который активирует сигнальный путь TGF-β и придает клеткам устойчивость к химиотерапии.
Эксперименты, проведенные с культивируемыми клетками, были воспроизведены с клетками ALL, полученными из костного мозга 7 пациентов. Введение этих клеток компетентным мышам в 5 случаях вызывало лейкемию. Химиотерапия уменьшала количество лейкемических клеток, но происходило формирование ниш. Повторные трансплантации клетками из ниш вызывали лейкемии, что свидетельствует о их природе как LPCs. Результаты свидетельствуют, что формирование ниш, содержащих LPCs, представляет собой регулярный механизм патогенеза при ALL.
Из 50 ALL пациентов, исследованных для подтверждения клинической релевантности полученных данных, после лечения 30 демонстрировали полную ремиссию, 15 – частичную ремиссию, и у 5 ремиссии не наблюдалось. В костном мозге у 15 из 20 пациентов с частичной ремиссией или ее отсутствием наблюдались типичные ниши – остаточные лейкемические клетки окруженные зрелыми мезенхимальными и развитой сетью ретикулиновых нитей. В остальных 5 из 20 случаев типичных ниш еще не наблюдалось, но наблюдалось обилие ретикулиновых нитей, что означало формирование ниш. У 30 пациентов с ремиссией ниши не обнаруживались, а количество нитей было незначительным. В нишах наблюдалась высокая концентрация GDF15 и антиапоптозного белка BCL-2. Эти результаты показывают, что трудности получить в результате химиотерапии полную ремиссию связаны с образованием ниш.
Изучение белок-белковых взаимодействий лежит в основе расшифровки практически любого клеточного процесса. Важность картирования взаимодействий также определяется их ролью в качестве мишени для разнообразных лекарственных препаратов. На сегодняшний день разработано множество методов для установления самого факта взаимодействия, однако определение зоны непосредственного контакта между двумя или более взаимодействующими белковыми молекулами все еще представляет значительную сложность. Хотя такие зоны обычно представлены достаточно консервативными аминокислотными остатками, расположение интерфейса взаимодействия внутри белкового комплекса сильно затрудняет их идентификацию.
Авторы работы, недавно опубликованной в Nature Communications, предложили новый эффективный метод идентификации зон молекулярного контакта, основанный на использовании распространенных низкомолекулярных красителей (органических пигментов). Принцип метода довольно прост – добавляемое в раствор взаимодействующих белков вещество связывается со всей поверхностью белковых молекул, исключая зону непосредственного межмолекулярного взаимодействия. В результате на поверхности белка образуется защитная пленка красителя. Затем исследуемые белки подвергают трипсинолизу. При этом связавшийся краситель блокирует сайты связывания трипсина и препятствует расщеплению той части белка, которая непосредственно не участвует во взаимодействии. Триптические пептиды, соответствующие зоне межмолекулярного контакта, затем идентифицируются с помощью масс-спектрометрии.
Авторы исследования продемонстрировали работоспособность предложенного метода на примере тройного взаимодействия интерлейкина IL1β, его рецептора IL1RI и вспомогательного белка IL1RAcP. Полученные в эксперименте данные были затем использованы для создания пептидов и моноклональных антител, специфически блокирующих рассматриваемые белок-белковые взаимодействия и соответствующий интерлейкин-опосредованный сигнальный каскад. Авторы считают, что предлагаемый метод идентификации зон взаимодействия достаточно универсален и может быть использован для разработки терапевтических средств, основанных на специфической блокаде белок-белковых взаимодействий. Следует отметить, что метод потенциально может быть модифицирован для изучения взаимодействий белковых молекул с небелковыми веществами, например, с нуклеиновыми кислотами и низкомолекулярными соединениями.
Подпись к рисунку из обсуждаемой статьи: Принцип предлагаемого метода. (a) Молекулы красителя связываются с поверхностью белкового комплекса, но не могут попасть в недоступную для растворителя зону межмолекулярного контакта. Приведено изображение лиганд-рецепторного комплекса интерлейкина 1b со связавшимся красителем в соответствии с масштабом. (b) Молекулы красителя, нековалентно связавшиеся рядом с консенсусными сайтами узнавания трипсина, блокируют трипсинолиз. После диссоциации окрашенных белков зона взаимодействия остается неокрашенной и подвержена трипсинолизу. Таким образом, триптические петиды будут происходить исключительно из неокрашенной зоны взаимодействия.
Исследованы молекулярная и функциональная организация в иерархии стволовых клеток и их потомков при миелодиспластическом синдроме. Показано, что источником пораженных клеток являются редкие предшественники с уникальным фенотипом. Возможно наиболее эффективная терапия будет связана с элиминацией таких предшественников.
Концепция раковых стволовых клеток (РСК) до сих пор не является бесспорной. Тем не менее, получены убедительные доказательства существования РСК при многих гематологических и сОлидных раках. Миелодиспластические синдромы (МДС) представляют собой нарушения созревания клеток крови, приводящие к несовершенному гематопоэзу часто прогрессирующему в острую миелоидную лейкемию. Для предотвращения этого заболевания требуется разработать средства, элиминирующие клоны, инициирующие МДС. Недавно показано, что МДС с делецией участка хромосомы 5q происходит от редких CD34+CD38- гематопоэтических стволовых клеток. Но не было показано, что они являются единственным предшественником МДС.
Авторы проследили наследование молекулярных и белковых маркеров от стволовых клеток к дифференцированным элементам крови (гранулоцитам-макрофагам, мегакариоцитам-предшественникам эритроидных клеток) при МДС. Показано, что способность поддерживать МДС-специфические клетки-потомки свойственна исключительно стволовым клеткам с фенотипом Lin-CD34+CD38-CD90+CD45RA-. При трансплантации мышам только эти клетки, но не их потомки производили весь спектр клеток, свойственных МДС.
С помощью секвенирования экзонов авторы проследили “обратный путь” накопления мутаций в элементах крови по мере развития МДС и трансформации его в острую миелоидную лейкемию у нескольких пациентов. Во всех случаях этот путь вел к единой стволовой клетке- предшественнику.
Полученные результаты позволяют полагать, что наиболее эффективная терапия МДС, который в настоящее время лечится плохо, может быть направлена против редких клеток с фенотипом Lin-CD34+CD38-CD90+CD45RA-. При других раках стволовые клетки могут быть не столь редкими. Но функциональная и молекулярная уникальность их может иметь важнейшее значение для реализации продолжающихся попыток идентифицировать их in vivo и использовать для мониторинга заболевания и как мишени для терапии. Элиминация стволовых раковых клеток представляется необходимой, а в принципе, возможно и достаточной для успешной терапии рака.
Феномен фоторецепции хорошо изучен у различных представителей животных, в первую очередь у позвоночных. Однако опсин-зависимая фоторецепция известна и за пределами царства животных – например, у грибов (которые вместе с животными образуют суперкладу Opisthokonta). Недавно вышедшая статья бразильских и британских ученых посвящена грибу Blastocladiella emersonii (Blastocladiomycota). Этот организм был выбран потому, что в его жизненном цикле присутствует (в отличие от более широко известных аско- и базидиомицетов) фаза зооспоры. Подвижность зооспор обеспечивается жгутиками; важно, что они обладают положительным фототаксисом. Авторами был изучен молекулярный механизм фоторецепции Blastocladiella.
Напомним, что в фоторецепторах сетчатки глаза позвоночных свет вызывает изменение конформации родопсина, что активирует G-белок трансдуцин, который, в свою очередь, ингибирует фосфодиэстеразу – фермент, катализирующий гидролиз цикло-ГМФ (цГМФ) до ГМФ. Понижение внутриклеточного уровня цГМФ приводит к закрытию Na/Ca каналов и, соответственно, к гиперполяризации мембраны фоторецепторной клетки. Далее сигнал передается через синапс на нейрон. Кроме того, при активации данного каскада активируется гуанилат-циклаза, восстанавливая уровень цГМФ.
Так вот, выяснилось, что механизм фоторецепции Blastocladiella обладает рядом поразительных особенностей. При секвенировании генома был обнаружен ген, кодирующий необычный "слитой" ("fusion") белок, гибрид опсина и гуанилат-циклазы, названный BeGC1. Дальнейшие эксперименты подтвердили его участие в фоторецепции и регуляции фототаксиса. Так, при освещении светом в зооспорах резко возрастала концентрация цГМФ. "Выжигание" (фотообесцвечивание) родопсина, блокирование биосинтеза ретиналя, а также ингибирование гуанилат-циклазной активности приводило к подавлению фототаксиса. Изучение внутриклеточной локализации BeGC1 иммунохимическими методами выявило, что он находится в т.н. глазкАх (eyespots), рядом с основанием жгутика. Помимо BeGC1, в геноме был найден BeCNG1, ген, кодирующий цГМФ-зависимый калиевый канал. Исходя из ряда важных признаков, авторы предположили, что именно он является эффектором BeGC1-зависимого фототаксиса, напрямую регулируя биение жгутика. Примечательно, что гомологи BeGC1, в частности, регулируют хеморецепцию у сперматозоидов некоторых животных.
Таким образом, изученный механизм фоторецепции у гриба выявил как определенное сходство с таковым у животных (родопсин-подобный фоторецептор, цГМФ как посредник), так и удивительные отличия.
Так что, как говорится,
"А у нас в Рязани Грибы с глазами: Их едят, А они глядят".
Картинка из рассматриваемой статьи A – молекулярный механизм фоторецепции у позвоночных B – молекулярный механизм фоторецепции у Blastocladiella emersonii RhI, родопсин I типа; RhII, родопсин II типа; GC, гуанилат-циклаза; T, трансдуцин; PDE, фосфодиэстераза; EM, мембрана глазков; PM, плазматическая мембрана; DM, мембрана дисков.
Охарактеризованы молекулярные механизмы функционирования деметилазы гистона Н3К4 JARID1B как онкогена при люминальном раке молочной железы. Полученные результаты могут быть полезны при разработке стратегии лечения этого заболевания. Но сложность спектра функций JARID1B требует более утонченного подхода, чем просто подавление ферментативной активности.
Метилирование гистонов играет важную роль не только в организации хроматина, но и в регуляции экспрессии генов. Систематическое исследование раковых геномов показало наличие множества нарушений в генах, ответственных за модификацию гистонов, но их роль в канцерогенезе и функциональное значение изучены недостаточно. Накоплено много данных о том, что метилтрансферазы и деметилазы гистонов играют ключевую роль в регулировке дифференцированного статуса клеток. Ген, кодирующий деметилазу лизина 4 гистона Н3 JARID1B был идентифицирован как реверсивно регулируемый сигнальным путем HER2 при раке молочной железы. Но, несмотря на важную роль JARID1B и в онтогенезе, и в канцерогенезе механизмы его функционирования изучены слабо.
Анализ культур клеток рака молочной железы показал, что увеличение количества копий гена и белка JARID1B коррелирует с увеличением количества транскриптов и белков, свойственных люминальному подтипу. В клетках и люминального, и базального рака подавление экспрессии JARID1B с помощью shРНК подавляло рост клеток, но в случаях люминального эффект был сильнее. При этом увеличивалось содержание метилированного гистона Н3, но не других гистонов. Подавление JARID1B с помощью siРНК приводило к накоплению или истощению множества транскриптов. Среди 200 генов, наиболее подверженных изменениям транскрипции, в люменальных клетках больше генов активировалось, чем подавлялось. В клетках базального рака наблюдалась обратная зависимость.
В результате подавления JARID1B с помощью siРНК происходило усиление экспрессии генов, связанных с базальным фенотипом, стволовыми клетками и компонентами сигнального пути TGFβ. Дальнейшие эксперименты показали, что экспрессия JARID1B требуется для подавления генов, свойственных базальному подтипу, а подавление его экспрессии ведет к торможению роста клеток. И наоборот, потеря функции JARID1B в клетках базального подтипа приводит к подавлению генов пути TGFβ, но это не обязательно связано с наблюдавшимся торможением роста.
Эксперименты по секвенированию участков генома, с которыми связывается JARID1B, по метилированию гистона Н3 и анализу профилей экспрессирующихся генов показали, что JARID1B преимущественно связывается с промоторами активных генов, обогащенных метилированным Н3. Но он не является сильным репрессором транскрипции, а скорее тонким регулятором метилирования гистона и уровня транскрипции. JARID1B играет ключевую роль в поддержании программы экспрессии генов, свойственных для люминального рака. Высокий уровень его экспрессии связан с негативным прогнозом течения заболевания.
Таким образом, детально охарактеризованы молекулярные механизмы функционирования деметилазы гистона Н3К4 JARID1B как онкогена при люминальном раке молочной железы. Полученные результаты могут быть полезны при разработке стратегии лечения этого заболевания. Но сложность спектра функций JARID1B требует более утонченного подхода, чем просто подавление ферментативной активности.
Рисунок: Продукт активного гена JARID1B подавляет экспрессию генов, связанных с базальным фенотипом, его блокирование приводит к подавлению роста клеток опухоли. В клетках базального фенотипа инактивация JARID1B активирует гены люминального фенотипа.
Источник: Yamamoto S, Wu Z, Russnes HG, Takagi S, Peluffo G, Vaske C, Zhao X, Moen Vollan HK, Maruyama R, Ekram MB, Sun H, Kim JH, Carver K, Zucca M, Feng J, Almendro V, Bessarabova M, Rueda OM, Nikolsky Y, Caldas C, Liu XS, Polyak K. JARID1B Is a Luminal Lineage-Driving Oncogene in Breast Cancer. // Cancer Cell. 2014; V. 25: P. 762-777.
Рак молочной железы “базального” фенотипа, в отличие от “люменального”, более агрессивен и плохо лечится. Показано, что важнейшую роль в регуляции механизмов транскрипции, поддерживающих “базальный” фенотип рака молочной железы, играет сумоилирование белка TFAP2А. Подавление сумоилирования может стать эффективной стратегией лечения базального рака.
Рак молочной железы – самое распространенное онкологическое заболевание женщин. Созданная в последнее время клиническая классификация его подтипов по профилю экспрессирующихся генов позволяет предсказывать исход заболевания и определять рациональную терапию. Но о механизмах регуляции транскрипции, определяющих эти подтипы, известно еще очень мало. Было известно, что функция TFAP2C - одного из генов семейства АР-2, чрезвычайно важна для поддержания люменального фенотипа рака, для индукции генов, свойственных этому фенотипу, и для репрессии генов, свойственных другому, более агрессивному базальному фенотипу. Несмотря на очень сильное сходство с TFAP2C, функции другого гена семейства TFAP2А сильно отличались. С целью получить важные данные для разработки стратегии создания противораковых средств авторы изучили функциональные различия белков TFAP2C и TFAP2А в регуляции “люменальных” генов.
В экспериментах на культурах клеток на уровне как мРНК, так и белков было показано, что выключение TFAP2C подавляет экспрессию “люменальных” генов, а выключение TFAP2А на нее практически не влияет. Активный ген TFAP2С подавлял экспрессию “базальных” генов, а TFAP2А на нее не действовал. В то же время анализ участков генома, с которыми связывались продукты этих двух генов показал их практическую идентичность. Следовательно, функциональные различия TFAP2C и TFAP2А не связаны с их взаимодействием с регуляторными областями генов-мишеней.
Эксперименты с гибридными белками, в которых отдельные участки TFAP2А замещались гомологичными участками TFAP2С показали, что область TFAP2С, ответственная за “люменальную” активацию, расположена в пределах первых 128 аминокислотных остатков. Блок активности TFAP2А на “люменальных” промоторах мог быть связан как с дополнительными коактиваторами, специфичными лишь для TFAP2С, так и с промотор-специфическими репрессорами TFAP2А. Проверка множества факторов, взаимодействующих с TFAP2C и TFAP2А показала, что активация TFAP2А на “люменальных” промоторах может быть достигнута путем инактивации двух генов, контролирующих путь присоединения к нему белков SUMO (small ubiquitin-like modifier). Замена K10R в TFAP2А также резко понижала уровень его сумоилирования и придавала способность активировать “люменальные” гены.
Выключение TFAP2C в культивируемых клетках придавало им “базальный” фенотип. Если же в них вводили TFAP2А-K10R, но не TFAP2А дикого типа, “люменальный” фенотип восстанавливался. Аналогичный эффект давало подавление сумоилирования специфическим ингибитором.
Обработка культур клеток базального рака ингибиторами сумоилирования перед введением их мышам подавляла образование опухолей. Более того, введение необработанных клеток на фоне “терапии” ингибиторами дало аналогичный результат. Токсического эффекта ингибиторов при этом не наблюдалось.
Таким образом показано, что сумоилирование играет важнейшую роль в регуляции механизмов транскрипции, поддерживающих “базальный” фенотип рака молочной железы. Подавление сумоилирования может стать эффективной стратегией лечения базального рака.
Рисунок: Сумоилирование белка TFAP2A требуется для поддержания высокоагрессивного базального фенотипа рака молочной железы. Блок сумоилирования придает опухоли менее агрессивный люменальный фенотип.
Описан новый механизм, создающий барьер для проникновения Т-клеток в опухоли. В сосудах раковых опухолей, но не в нормальных тканях, экспрессируется FasL - лиганд медиатора гибели клеток. В результате происходит селективное поражение эффекторных, но не регуляторных Т-клеток, что приводит к подавлению иммунного ответа на опухоль. Комбинированное воздействие на FasL и на факторы опухоли, индуцирующие продукцию FasL, может стать эффективной стратегией терапии рака.
Эффективность иммунного ответа на рак в значительной мере зависит от способности противоопухолевых Т-клеток проникать к опухоли. Высокий уровень инфильтрации ими опухоли существенно повышает выживаемость больных. Опухоль же использует ряд протективных программ для уклонения от иммунного ответа и усиленного ангиогенеза. Было показано, что факторы, контролирующие ангиогенез, осуществляют и ряд других функций. В частности, они организуют барьер, ограничивающий инфильтрацию Т-клетками. Есть данные, что эндотелий действует как селективный барьер, позволяющий некоторым Т-клеткам, в частности Т-регуляторам (Treg), проникать более эффективно. Но эта дифференциальная регуляторная роль эндотелия ранее не исследовалась.
Авторы обратили внимание на белок FasL, который действует как медиатор при апоптозе Т-клеток и о котором было известно, что он экспессируется в эндотелии опухолей человека и мыши. Иммуногистохимическое исследование более 600 опухолей шести типов рака и соответствующих нормальных тканей показало, что FasL не определяется в нормальных тканях, но экспрессируется в кровеносных сосудах первичных опухолей и метастазов. При совместном культивировании клеток эндотелия из раковых опухолей яичников с активированными Т-лимфоцитами, ассоциированными с опухолью наблюдалась гибель Т-лимфоцитов. Антитела, блокирующие FasL, ослабляли этот эффект.
Для эффективного противоопухолевого действия требуется правильный баланс в опухолях Т-эффектора (Тeff) и Т-регулятора (Treg). Эксперименты с культивируемыми клетками показали, что эндотелиальный FasL не действует на неактивированные Т-клетки. В то же время он активно подавляет Тeff, но не Treg. В раковых опухолях наблюдался дисбаланс этих клеток с резким сдвигом в пользу Treg. Таким образом, активация экспрессии FasL в клетках эндотелия в опухоли селективно элиминирует клетки Тeff, что приводит к накоплению в опухолях Treg с которым связана устойчивость к иммунному ответу.
Локальная экспрессия эндотелиального FasL позволяет предположить регулировку локальными факторами. Обработка культивируемых клеток эндотелия асцитной жидкостью 20 раковых опухолей яичников, содержащей растворимые факторы опухоли, примерно в половине случаев вызывала индукцию FasL. Также примерно половина из супернатантов 13 клеточных линий рака яичников обладали аналогичными свойствами. При этом, если клетки культивировали в гипоксических условиях эффект проявлялся сильнее. Ряд проверенных опухолевых факторов индивидуально не индуцировал FasL. Но интерлейкин-10 и простагландин Е2 таким свойством обладали, и индукция усиливалась при добавлении VEGF-A (фактор роста васкулярного эпителия А). Комбинация этих трех факторов обладала еще более сильным действием. VEGF-A как таковой не достаточен и не является необходимым для индукции FasL, но его присутствие резко усиливало продукцию.
Анализ опухолей рака яичников показал, что в большинстве из них усиленно экспрессируются VEGF-A и СОХ1 (циклооксигеназа 1), которые могут регулировать экспрессию FasL. Это предположение было проверено на мышиных моделях, имитирующих несколько раков человека. Комбинированное введение антител против Vegf-a и ингибитора Сох1 ацетилсалициловой кислоты, других ингибиторов этих факторов резко снижало уровень FasL в сосудах опухолей и подавляло рост опухолей. На мышах также было показано, что экспрессия FasL сдвигает в опухолях соотношение Тeff/Treg в сторону Treg, а обработка ингибиторами Vegf-a и Сох1 восстанавливало инфильтрацию опухолей Тeff. Ингибиторы этих факторов, как и ингибитор простагландина, замедляли рост опухолей и продлевали выживаемость мышей.
Показанная в результате исследования тесная связь механизмов ангиогенеза и иммуносупрессии, множество факторов и путей, контролирующих эти процессы, позволяют предположить, что наиболее эффективной стратегией терапии рака будет комбинированное воздействие на механизмы обоих процессов.